
MaTRU: A New NTRU-Based Cryptosystem

Michael Coglianese1 ? and Bok−Min Goi2 ??

1 Macgregor, 321 Summer Street
Boston, MA 02210, USA
mcoglian@comcast.net

2 Centre for Cryptography and Information Security (CCIS)
Faculty of Engineering, Multimedia University

63100 Cyberjaya, Malaysia
bmgoi@mmu.edu.my

Abstract. In this paper, we propose a new variant of the NTRU pub-
lic key cryptosystem − the MaTRU cryptosystem. MaTRU works under
the same general principles as the NTRU cryptosystem, except that it
operates in a different ring with a different linear transformation for en-
cryption and decryption. In particular, it operates in the ring of k by k
matrices of polynomials in R = Z[X]/(Xn−1), whereas NTRU operates
in the ring Z[X]/(XN − 1). Note that an instance of MaTRU has the
same number of bits per message as an instance of NTRU when nk2 = N .
The improved efficiency of the linear transformation in MaTRU leads to
respectable speed improvements by a factor of O(k) over NTRU at the
cost of a somewhat larger public key.

Keywords: Public key cryptosystems, NTRU, lattice based cryptogra-
phy, lattice attacks, partial polynomial evaluation.

1 Introduction

Since the concept of public key cryptography was first introduced by
Diffie and Hellman [4] in 1976, there has been steadily increasing interest
in cryptographic studies; many public key cryptosystems have been pro-
posed, i.e. RSA [22] based on integer factorization problem, the McEliece
systems [15] based on algebraic coding theory, the ECC systems [12] based
on the intractability of elliptic curve DLP and the variants of Matsumoto-
Imai cryptosystems [14, 3] based on the systems of multivariable polyno-
mials. Unfortunately, in practice many of these algorithms are costly in
terms of computational and space complexity. These costs inhibit the
ability of these algorithms to be substituted for symmetric key cryptosys-
tems, and it prevents some of them (e.g. RSA) from running effectively

? The first author initially performed this work at Brown University, USA.
?? The second author acknowledges the Malaysia IRPA grant (04-99-01-00003-EAR).

on low power computing devices such as low-cost smart cards, RFID de-
vices, and cell phones. As a result, cryptographers continue to look for
new, fast public key cryptosystems, especially those which are based on
different hard problems. Since 1996, researchers from NTRU Cryptosys-
tems [21] have proposed a group of fast public key cryptosystems based
on partial evaluation of constrained polynomials over polynomial rings.
These cryptosystems include the NTRU public key encryption algorithm
[8] and the digital signature scheme NTRUSign [7].

Next, let us briefly describe one of these cryptosystems, NTRU. NTRU
is a public key cryptosystem that operates in the ring Z[X]/(XN − 1).
Encryption and decryption of a message corresponds to applying a lin-
ear transformation to a ring element. Since this linear transformation
performs the multiplication of two polynomials, the cost of applying it
is O(N2) operations (assuming Fast Fourier Transforms are not used).
In addition, these operations are on small integers, allowing for further
speed optimizations. For these reasons, the speed of NTRU is one of its
strongest features. NTRU operates considerably faster than both RSA
and ECC at relatively the same security levels [13, 8]. However, the speed
of NTRU can be further improved by choosing a different ring and ap-
plying a more efficient linear transformation [9, 10]. The hard problem
underlying this cryptosystem is related to finding short vectors in a lat-
tice due to the properties of short polynomials used in the system [2, 16,
20]. Since NTRU was proposed, it has been cryptanalyzed heavily by the
cryptographic community, and some interesting results can be found in
[5, 6, 11, 17, 19]. Meanwhile, some variants of NTRU encryption schemes
have also been proposed, such as the generalized NTRU schemes [1].

The MaTRU cryptosystem, described in this paper, uses a more ef-
ficient linear transformation while providing a security level comparable
to that of NTRU. MaTRU operates in the ring of k by k matrices of
polynomials in R = Z[X]/(Xn − 1). Note that an instance of MaTRU
has the same number of bits per message as an instance of NTRU when
nk2 = N . While NTRU involves performing a one-sided multiplication for
encryption and decryption [8], the linear transformation applied in Ma-
TRU is a two-sided matrix multiplication. This means that the private
key in MaTRU has two ring elements, as opposed to one ring element
in NTRU. This is essential because multiplying on one side just gives a
search space of size, say S, for the private key and the effect would be
linear. Then, a lattice attack could be mounted very similar to the one on
NTRU. However, multiplying on both sides will amplify the space of all
linear transformations to S2. The lattice attack will be extremely hard,

2

due to the high dimension lattice matrix. Another difference between the
two cryptosystems is that the ring in MaTRU is not commutative. This
means that the matrices in the private key and the random matrices
applied during encryption must specifically be constructed so that they
commute with each other.

Since applying the linear transformation in MaTRU involves ma-
trix multiplications, the encryption and decryption processes only require
O(n2k3) operations. This results in a speed increase by a factor of O(k)
over NTRU. In practice, this increase is approximately k

2 since MaTRU
uses two matrix multiplications for every polynomial multiplication in
NTRU. The private and public key lengths for MaTRU are O(nk2), mak-
ing them comparable to key lengths in NTRU.

In the next section, we describe our proposed MaTRU cryptosystem in
detail. Then, we discuss the parameter selection for MaTRU in Section 3.
In Section 4, we present the details of the security analysis of the proposed
scheme. We show its security strength based on certain parameter choices
and compare it with standard NTRU in Section 5. Finally, we summarize
our conclusions in Section 6.

2 The MaTRU Algorithm

2.1 Notation

The MaTRU cryptosystem operates in the ring M of k by k matrices of
elements in the ring R = Z[X]/(Xn−1). The ring R consists of polynomi-
als with degree at most (n− 1) having integer coefficients. Multiplication
and addition of polynomials in R is done in the usual manner, but expo-
nents of X are reduced modulo n. Matrix multiplication in M is denoted
using the ∗ symbol.

Besides n and k, MaTRU also uses the parameters p, q ∈ N. The
numbers p and q may or may not be prime, but they must be relatively
prime. In general, p is much smaller than q; in this paper, for ease of
explanation, we stick to p = 2 or p = 3 and q in the range of 28 to 211.
When we say we perform a matrix multiplication modulo p (or q), we
mean that we reduce the coefficients of the polynomials in the matrices
modulo p (or q).We define the width of an element M ∈ M to be |M |∞ =
(maxpolys. m in M coeff. in m) − (minpolys. m in M coeff. in m) . The width
of M is the maximum coefficient in any of its k2 polynomials minus the
minimum coefficient in any of its polynomials. We say a matrix M ∈ M is
short if |M |∞ ≤ p. When short matrices are multiplied together, we get a
matrix which has a width which may be greater than p but is still almost

3

certainly smaller than q; we call this matrix pretty short. The definitions
for width and shortness apply similarly to polynomials in R. For r ∈ R,
|r|∞ = (max coeff. in r) − (min coeff. in r). The polynomial r is said to
be short if |r|∞ ≤ p. We also define the size of an element M ∈ M to be

|M | =
√∑

polys. m in M

∑
(coeff. in m)2.

When defining some of the sets of short matrices below, we use the
notation

L(d) =

M ∈ M |
for i =

⌈
−p−1

2

⌉
. . .

⌈
p−1
2

⌉
, i 6= 0, each polynomial

in M has on average d coefficients equal to i,
with the rest of the coefficients equal to 0.

 .

For example, if p = 3 and n = 5, then L(2) consists of all matrices of
polynomials where on average each polynomial has 2 coefficients equal to
1, 2 coefficients equal to −1, and 1 coefficient equal to zero. Or, if we had
p = 2 and n = 5, then L(2) consists of all matrices of polynomials where
on average each polynomial has 2 coefficients equal to 1 and 3 coefficients
equal to zero.

The parameters for MaTRU consist of the four integers (n, k, p, q)
described above and the five sets of matrices (Lf ,LΦ,LA,Lw,Lm) ⊂ M.
These sets have the following meanings and compositions:

Set Elements Description Composition
Lf f, g Compose private key Short; see (2) below
LΦ Φ, Ψ Random matrices applied for

each encryption
Short; see (2) below

LA A,B Used to construct f, g, Φ, Ψ Short; see (1) below
Lw w Used to construct public key Short
Lm m Messages Short; see (3) below

1. LA consists of all matrices C ∈ M such that C0, C1, . . . , Ck−1 are lin-
early independent modulo q; and for short c0, . . . , ck−1 ∈ R,

∑k−1
i=0 ciC

i

is short. Section 3.2 describes the exact nature of LA that satisfies
these conditions.

2. Lf and LΦ consist of all matrices D ∈ M constructed such that, for
C ∈ LA and short c0, . . . , ck−1 ∈ R, D =

∑k−1
i=0 ciC

i. Additionally,
matrices in Lf must satisfy the requirement that they have inverses
modulo p and modulo q.

4

3. The set of messages Lm consists of all matrices of polynomials with
coefficients modulo p. We therefore express

Lm =

{
M ∈ M |polynomials in M have coefficients

between
⌈
−p−1

2

⌉
and

⌈
p−1
2

⌉ }
.

This means that each message contains nk2 log2 p bits of information.

2.2 Key Creation

To create a public/private key pair, Bob chooses two k by k matrices
A,B ∈ LA. Next, Bob randomly selects short polynomials α0, α1, . . . αk−1 ∈
R and β0, β1, . . . βk−1 ∈ R. Bob then constructs the matrices f, g ∈ Lf

by taking

f =
k−1∑
i=0

αiA
i and g =

k−1∑
i=0

βiB
i .

As noted above in Section 2.1, the matrices f and g must have inverses
modulo p and modulo q. This will generally be the case, given suitable
parameter choices. We denote the inverses as Fp, Fq and Gp, Gq, where

Fq ∗ f ≡ I(mod q) and Fp ∗ f ≡ I(mod p);
Gq ∗ g ≡ I(mod q) and Gp ∗ g ≡ I(mod p).

Note that I is a k by k identity matrix. Bob now has his private key,
(f, g), although in practice he will want to store the inverses Fp and Gp

as well. Bob now selects a random matrix w ∈ Lw, and constructs the
matrix h ∈ M by taking

h ≡ Fq ∗ w ∗Gq (mod q) .

Bob’s public key consists of the three matrices, (h,A,B).

2.3 Encryption

To encrypt a message to send to Bob, Alice randomly generates the short
polynomials φ0, φ1, . . . φk−1 ∈ R and ψ0, ψ1, . . . ψk−1 ∈ R. Alice then
constructs the matrices Φ, Ψ ∈ LΦ by taking

Φ =
k−1∑
i=0

φiA
i and Ψ =

k−1∑
i=0

ψiB
i .

5

Alice then takes her message m ∈ Lm, and computes the encrypted mes-
sage

e ≡ p(Φ ∗ h ∗ Ψ) +m (mod q) .

Alice then sends e to Bob.

2.4 Decryption

To decrypt, Bob computes

a ≡ f ∗ e ∗ g (mod q) . (1)

Bob translates the coefficients of the polynomials in the matrix a to the
range −q/2 to q/2 using the centering techniques as in the original NTRU
paper [8]. Then, treating these coefficients as integers, Bob recovers the
message by computing

d ≡ Fp ∗ a ∗Gp (mod p) .

2.5 Why Decryption Works

In decryption, from Eq. [1] Bob has

a ≡ f ∗ (p(Φ ∗ h ∗ Ψ) +m) ∗ g (mod q)
≡ p(f ∗ Φ ∗ Fq ∗ w ∗Gq ∗ Ψ ∗ g) + f ∗m ∗ g (mod q)

Although matrix multiplication is not generally commutative, f and Φ
here do indeed commute:

f ∗ Φ ≡ (
∑k−1

i=0 αiA
i) ∗ (

∑k−1
i=0 φiA

i) (mod q)
≡

∑k−1
i=0

∑
i≡j+` (mod k) αjA

jφ`A
` (mod q)

≡
∑k−1

i=0

∑
i≡j+` (mod k) φ`A

j+`αj (mod q)
≡

∑k−1
i=0

∑
i≡j+` (mod k) φ`A

`αjA
j (mod q)

≡ (
∑k−1

i=0 φiA
i) ∗ (

∑k−1
i=0 αiA

i) ≡ Φ ∗ f (mod q)

Similarly, g ∗ Ψ ≡ Ψ ∗ g (mod q). So, Bob now has that

a ≡ p(Φ ∗ w ∗ Ψ) + f ∗m ∗ g (mod q)

For appropriate parameter choices, |a|∞ ≤ q. Then, treating the poly-
nomials in this matrix as having coefficients in Z, Bob can take those
coefficients modulo p, leaving f ∗m ∗ g(mod p). The original message is
then recovered by left-multiplying by Fp and right-multiplying by Gp.

6

3 Parameter Selection

3.1 Selection of pairs (f, g) and (Φ, Ψ)

We define df and dφ such that

Lf = L(df) and LΦ = L(dφ) .

Since the matrices A and B are public, the security of f , g, Φ, and Ψ
necessarily depends on the difficulty of discovering the short polynomials
αi, βi, φi, and ψi. For this reason, we want to maximize the number of
possible choices for these polynomials. We therefore commonly select

df ≈
n

p
and dφ ≈

n

p
.

See section 4.1 for precise brute force security calculations.

Remark 1. A matrix f in the ring M will be invertible modulo p and q,
only if the correspond matrix determinant detf , which is in the ring R, is
also invertible modulo p and q. In practice, this is impossible if detf (1) = 0
(the sum of the coefficient values of the determinant polynomial is equal
to 0). So we must re-select one or more of the polynomial elements in f
if this condition was not fulfilled.

3.2 Selection of A and B

A main concern in generating the matrices f and Φ (and likewise, g and
Ψ) is that they must not only commute, but they should also be short.
Shorter matrices ensure that |p(Φ ∗ w ∗ Ψ) + f ∗m ∗ g|∞ will be smaller,
which will allow us to reduce q and valid ciphertexts will be decipherable.

To achieve this, we select A and B to be permutation matrices. A
permutation matrix is a binary matrix (i.e. consisting of only the scalars
0 and 1) such that there is exactly one 1 in each row and column with
all 0s elsewhere. Since A and B have the additional requirement that the
sets A0, . . . , Ak−1 and B0, . . . , Bk−1 are both linearly independent, we
have that

k−1∑
i=0

Ai =
k−1∑
i=0

Bi =

1 . . . 1
...

. . .
...

1 . . . 1

 .

This implies that each row and column of f will contain some permuta-
tion of α0, . . . , αk−1, meaning that each αi will appear k times in f . An
analogous situation exists for g, Φ, and Ψ .

7

Using the common choice of df ≈ dφ ≈ n
p , we have that

|f | ≈
√
k2|αi|2 ≈

√
(p− 1)nk2

p
≈ |g| ≈ |Φ| ≈ |Ψ | .

3.3 Selection of w

Like f and g, w should also be chosen to be short in order to keep |p(Φ ∗
w ∗ Ψ) + f ∗m ∗ g|∞ small. For security reasons, it is important that w
remain secret from an attacker. Therefore, in order to maximize the space
of w we make

Lw = L
(⌊

n

p

⌋)
.

The size of w is then given by

|w| =

√
(p− 1)nk2

p
.

Remark 2. Note that when w is chosen in this manner, on average |w| ≈
|m|. This means that |Φ ∗ w ∗ Ψ | ≈ |f ∗m ∗ g|.

4 Security Analysis

4.1 Brute Force Attacks

To find a private key by brute force, an attacker must try all possible
short pairs of matrices (f, g) to find one such that f ∗ h ∗ g is also short.
Since the matrices A and B are public, f and g are determined by the
2k polynomials α0, . . . , αk−1, β0, . . . , βk−1. Each of these polynomials has
degree n− 1, so the number of possible (f, g) pairs is

(key security) =
(

n!
(n− (p− 1)df)!df !(p−1)

)2k

. (2)

Similarly, the encryption of a particular message is determined by the
2k polynomials φ0, . . . , φk−1, ψ0, . . . , ψk−1, so we have the same message
security as Eq. [2] with replacing df by dφ. Using a meet-in-the-middle
attack, such as the method due to Odlyzko [18] used on the standard
NTRU algorithm, assuming sufficient memory storage, the key and mes-
sage security would be equal to the square root of the above values. Note
that for the standard NTRU algorithm with the suggested parameters,
the meet-in-the-middle attack is the most effective known attack.

8

4.2 Lattice Attacks

Key security. Message decryption, which left-multiplies the encrypted
message by f and right-multiplies it by g, amounts to the application of a
linear transformation T : M → M such that both T and T (h) are short.
If this was the case, then it is likely that either T is the transformation
corresponding to the one given by the actual private key, or that T will
work as a substitute for the private key in decrypting messages.

Let Tf,g : M → M be the linear transformation corresponding to
decryption with the actual private key. Then Tf,g is defined by Tf,g(J) :
J → f ∗ J ∗ g . What does the transformation Tf,g look like? To see
this, we look at where Tf,g takes the basis matrices for the space of all
possible matrices J . The basis consists of the k2 matrices δi,j , where
δi,j has a 1 in position (i, j) and 0s elsewhere. We then have that Tf,g =
(fδ0,0g fδ0,1g . . . fδk−1,k−1g) . This describes how Tf,g maps the ba-
sis matrices for the space of possible J ’s: δ0,0 → fδ0,0g, δ0,1 → fδ0,1g, and
so on.

Since f =
∑k−1

i=0 αiA
i and g =

∑k−1
i=0 βiB

i, we can express Tf,g as
a combination of the k2 linear transformations TAi,Bj , where TAi,Bj =(
Aiδ0,0B

j Aiδ0,1B
j . . . Aiδk−1,k−1B

j
)
. We then have that Tf,g(J) =∑

i,j γi,jTAi,Bj (J) . In this formula, each polynomial γi,j is the multiple of
TAi,Bj needed to produce the particular transformation Tf,g. Therefore,
we have precisely that γi,j = αiβj .

Now, since the αi’s and βj ’s are short, the polynomials γi,j will be
pretty short. In addition, Tf,g(h) = w is short. So, the linear transforma-
tion Tf,g corresponds to a short target vector (γ0,0, γ0,1, . . . , γk−1,k−1, w)
in the lattice L = {(T, T (h))}. This lattice L is generated by the rows of
the following 2nk2 by 2nk2 matrix composed of four nk2 by nk2 blocks:

1 0 . . . 0 h0,0 h0,1 . . . hk−1,k−1

0 1 . . . 0 hk−1,k−1 h0,0 . . . hk−1,k−2
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 h0,1 h0,2 . . . h0,0

0 0 . . . 0 q 0 . . . 0
0 0 . . . 0 0 q . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . q


In the above matrix, the n by n matrix hi,j represents the n coefficients
of the polynomial at position (i, j) in h. Note that detL = qnk2

and
dimL = 2nk2.

9

As noted earlier, each γi,j = αiβj , so |γi,j | = |αiβj | ≈ |αi||βj | ≈
(p − 1)df . There are k2 γi,j polynomials, so the size of the target vector
(γ0,0, γ0,1, . . . , γk−1,k−1, w) is given by

|target| ≈
√

((p− 1)df)2k2 + |w|2.

Using the suggested df ≈ n
p and |w| =

√
(p−1)nk2

p yields

|target| ≈

√
(p− 1)nk2((p− 1)n+ p)

p2
.

By the Gaussian heuristic, the expected shortest vector in L is

|exp. shortest| =
√

dimL

2πe
(detL)

1
dim L =

√
qnk2

πe
.

Let ch equal the ratio of the target vector to the expected shortest
vector. If ch is near 0, the target vector will likely be much smaller than
any other vectors in the lattice, and will therefore be easier to find. If
ch is near 1, then there will likely be many vectors near the size of the
target, making the target difficult to find. In our case,

ch ≈
|target|

|exp. shortest|
≈

√
πe(p− 1)((p− 1)n+ p)

p2q
.

For example, the MaTRU parameters suggested in section 5 give values
for ch around 0.2. This means that if the LLL algorithm finds a vector in
the lattice L around two tenth the size of the expected shortest vector,
then the algorithm has most likely found Tf,g or another suitable linear
transformation.

Message security. A lattice attack can also be used to try to discover
a particular message. The way this is done is very similar to the lattice
attack on a key. Since we selected the parameters df ≈ dφ and |w| ≈ |m|,
we have that |Φ ∗w ∗Ψ | ≈ |f ∗m ∗ g|. So the lattice security of a message
will be the same as that of the key, meaning cm ≈ ch. The constant cm
indicates how difficult it will be to discover a particular message. Finding
the message will be more difficult when cm is close to 1 and easier when
cm is close to 0.

10

Remark 3. The above lattice matrix for MaTRU can be further optimized
by multiplying the top-left nk2 by nk2 identity submatrix by a scaling
factor, α, as in [8]. Also, by using zero-forcing technique [16], we can
reduce the dimension of the lattice matrix and increase the performance
of lattice attacks. These considerations will be taken into account in a
future revision of the parameter choices for MaTRU.

5 Discussion

5.1 Parameter Choices

Table 1 shows some possible parameter choices for MaTRU along with
their brute force and lattice security levels. Key and message securities
listed below are for a meet-in-the-middle attack; these values should be
squared for a regular brute force attack.

Table 1. Possible parameter choices for MaTRU

n k p q df dφ key security msg. security ch dim L

6 15 3 2048 2 2 297.4 297.4 0.118 2700
8 9 3 1024 2 2 278.4 278.4 0.188 1296
11 6 3 1024 3 3 279.0 279.0 0.215 792
16 8 2 379 8 8 2109.2 2109.2 0.318 2048
18 5 2 251 9 9 277.8 277.8 0.412 880

5.2 Comparison with Standard NTRU

Here we compare the theoretical operating characteristics of MaTRU with
those of NTRU, as shown in Table 2. The properties are listed in terms of
the parameters (N, p, q) for NTRU and the parameters (n, k, p, q) for Ma-
TRU. These should be compared by setting N = nk2, since this equates
to plain text message blocks of the same size.

As indicated by the table, the total time for encryption and decryption
is k

2 times faster for MaTRU than for NTRU. MaTRU has a larger public
key length as a result of needing to store the matrices A and B, but a
smaller private key length due to the particular nature of the private keys
f and g.

For example, compare the NTRU “high” security level of (N, p, q) =
(263, 3, 128) with the MaTRU parameter choices of (n, k, p, q) = (18, 5, 2, 251).

11

Table 2. Comparison between MaTRU with NTRU

Characteristic NTRU [8] MaTRU [this paper]

Plain Text Block N log2 p bits nk2 log2 p bits
Encrypted Text Block N log2 q bits nk2 log2 q bits
Encryption Speed O(N2) operations O(n2k3) operations1

Decryption Speed O(N2) operations O(n2k3) operations1

Message Expansion logp q-to-1 logp q-to-1
Private Key Length 2N log2 p bits 2nk2 log2 p bits2

Public Key Length N log2 q bits 3nk2 log2 q bits3

Key Security (Message Security)4 N !
dg !2(N−2dg)!

(n!
((n−2)df)!df !2

)2k

Lattice Security, ch (cm)5 2(π2de2

3Nq2)
1
4 1

3

q
2πe(2n+3)

q

1 Since MaTRU performs two-sided multiplications, the constant factor will be about
twice that of standard NTRU.
2 A key length of 2nk log2 p + 2k2 log2 k bits can be achieved by storing f and g not as
matrices but as the 2k polynomials found in the matrices along with their positions
in the matrices.
3A key length of nk2 log2 q + 2k log2 k bits can be achieved by storing A and B not as
matrices but as the positions of each of the k 1s in the two matrices.
4For message security, dg is replaced by d for NTRU whereas df is replaced by dφ

for MaTRU. For ease of comparison, we fix p = 3. We refer the readers to [8] for the
definition of dg and d used in NTRU.
5Note that ch ≈ cm, so that we have equivalent security level at key and message. For
ease of comparison, we fix p = 3.

NTRU in this case would have a plain text block size of 417 bits, a pri-
vate key length of 834 bits, and a public key length of 1841 bits. MaTRU
would have a plain text block size of 450 bits, a private key length of 297
bits, and a public key length of 3611 bits. MaTRU would theoretically be
2.5 times faster at encryption/decryption than the instance of NTRU in
this case.

6 Conclusion

We have presented the MaTRU cryptosystem in detail, and we have
shown that its security level is comparable to NTRU with respect to sev-
eral well-known attacks, including brute force attacks, lattice attacks and
meet-in-the-middle attacks. However, the security analysis of MaTRU is
heuristic because there may be a better attack on it than on the origi-
nal NTRU. Further research on the lattice attack on MaTRU may yield
new techniques (e.g. subdividing the lattice) that are more effective. We
have also suggested several parameter choices for MaTRU that provide

12

a significant speed improvement over NTRU with relatively similar secu-
rity levels. Future work to obtain precise running times and lattice attack
times will allow for further refinements to the list of suggested MaTRU
parameters in Table 1. Additionally, the introduction of the commuta-
tive family (using permutation matrices) has been given a reasonable
scrutiny but would benefit from further analysis. Finally, we believe that
the continued study of optimization, improvement and cryptanalysis of
MaTRU based on the previously proposed techniques used with the orig-
inal NTRU, especially the impact of imperfect decryption [17], presents
interesting challenges to explore.

Acknowledgement

We would like to thank Jeffrey Hoffstein for his advice and suggestions,
Wee-Keong Lim for the discussion in matrix theory and anonymous ref-
erees for their constructive and detailed comments that have greatly im-
proved this paper.

References

1. William D. Banks and Igor E. Shparlinski. A variant of NTRU with non-invertible
polynomials. In Proceeding of Indocrypt ’02, LNCS, vol. 2551, Springer-Verlag,
pp.62-70, 2002.

2. D. Coppersmith and A. Shamir. Lattice attacks on NTRU. In Proceeding of Euro-
crypt ’97, LNCS, vol. 1233, Springer-Verlag, pp.52-61, 1997.

3. J. Ding. A new variant of the Matsumoto-Imai cryptosystem through perturbation.
In Proceeding of PKC ’04, LNCS, vol. 2947, Springer-Verlag, pp.305-318, 2004.

4. W. Diffie and M.E. Hellman. New directions in cryptography. In IEEE Trans. On
Information Theory, vol. 22, pp.644-654, 1976.

5. C. Gentry. Key recovery and message attacks on NTRU-composite. In Proceeding
of Eurocrypt ’01, LNCS, vol. 2045, Springer-Verlag, pp.182-194, 2001.

6. Daewan Han, Jin Hong, Jae Woo Han and Daesung Kwon. Key recovery attacks on
NTRU without ciphertext validation routine. In Proceeding of ACISP ’03, LNCS,
vol. 2727, Springer-Verlag, pp.274-284, 2003.

7. J. Hoffstein, N. Howgrave-Graham, J. Pipher, J.H. Silverman and W. Whyte.
NTRUSign: Digital Signatures Using the NTRU Lattice. In Proceeding of CT-RSA
’03, LNCS, vol. 2612, Springer-Verlag, pp.122-140, 2003.

8. J. Hoffstein, J. Pipher and J.H. Silverman. NTRU: A Ring-Based Public Key
Cryptosystem. In Proceeding of ANTS III, LNCS, vol. 1423, Springer-Verlag, pp.
267-288, 1998.

9. J. Hoffstein and J.H. Silverman. Optimizations for NTRU. In Public-key Cryptog-
raphy and Computational Number Theory, DeGruyter, 2000. Available at [21].

10. J. Hoffstein and J.H. Silverman. Random small hamming weight products with
applications to cryptography. Discrete Applied Mathematics, vol. 130, Issue 1 -
special issue on the 2000 com2MaC workshop on cryptography, pp. 37 - 49, 2003.
Available at [21].

13

11. E. Jaulmes and A. Joux. A Chosen Ciphertext Attack on NTRU. In Proceeding of
CRYPTO ’00, LNCS, vol. 1880, Springer-Verlag, pp. 20-35, 2000.

12. N. Koblitz. Elliptic curves cryptosystems. Math of Comp. vol. 48, pp. 203-209,
1987.

13. P. Karu and J. Loikkanen. Practical comparison of fast public-key cryp-
tosystems. Seminar on Network Security, Telecommunications Software and
Multimedia Laboratory, Kelsinki University of Technology. Available at
http://www.tml.hut.fi/Opinnot/Tik-110.501/2000/papers.html.

14. T. Matsumoto and H. Imai. Public quadratic polynomial-tuples for efficient
signature-verification and message-encryption. In Proceeding of Eurocrypt ’88,
LNCS, vol. 330, Springer-Verlag, pp.419-453, 1988.

15. R.J. McEliece. A public-key cryptosystem based on algebraic coding theory. JPL
DSN Progress Report 42-44, pp. 114-116, 1978.

16. A. May and J.H. Silverman. Dimension Reduction Methods for Convolution Mod-
ular Lattices. In Proceeding of CaCL ’01, LNCS, vol. 2146, Springer-Verlag, pp.
110-125, 2001.

17. N. Howgrave-Graham, P.Q. Nguyen, D. Pointcheval, J. Proos, J.H. Silverman, A.
Singer and W. Whyte. The Impact of Decryption Failures on the Security of NTRU
Encryption. In Proceeding of CRYPTO ’03, LNCS, vol. 2729, Springer-Verlag, pp.
226-246, 2003.

18. N. Howgrave-Graham, J.H. Silverman, W. Whyte, NTRU Cryptosystems Technical
Report #004, Version 2: A Meet-In-The-Middle Attack on an NTRU Private Key,
www.ntru.com.

19. P.Q. Nguyen and D. Pointcheval. Analysis and Improvements of NTRU Encryption
Paddings. In Proceeding of CRYPTO ’02, LNCS, vol. 2442, Springer-Verlag, pp.
210-225, 2002.

20. P.Q. Nguyen and J. Stern. The Two Faces of Lattices in Cryptology. In Proceeding
of CaCL ’01, LNCS, vol. 2146, Springer-Verlag, pp. 148-180, 2001.

21. NTRU Cryptosystems. Technical reports available at
http://www.ntru.com/cryptolab/tech notes.htm.

22. R.L. Rivest, A. Shamir, L. Adleman. A method for obtaining digital signatures
and public key cryptosystem. Communications of the ACM, vol. 21, pp. 120-126,
1978.

14

